Efficient Monte Carlo Simulation with Stochastic Volatility
ثبت نشده
چکیده
Monte Carlo simulation is a powerful aid in many fields. In this thesis it is used for pricing of financial derivatives. Achieving accurate results with Monte Carlo is rather timeconsuming due to its slow convergence. However, there are ways to improve the accuracy of each simulation, for instance by reducing the inevitable discretization bias. In our financial context, this concerns the discretization of the stochastic processes governing the underlying asset. Specifically, we consider assets following Heston’s stochastic volatility model. We examine different discretization schemes with the aim of an efficient implementation of the Heston model in a generic Monte Carlo engine. It turns out to be quite demanding to outperform the simple Euler scheme. In fact, we did not find any reason to use anything but (a slightly modified) Euler. Referat Effektiv Monte Carlo-simulering med Stokastisk Volatilitet Monte Carlo-simulering är ett kraftfullt hjälpmedel inom många områden. I det här examensarbetet används det för prissättning av finansiella derivat. Att nå precisa resultat med Monte Carlo är tidskrävande på grund av dess långsamma konvergens. Det finns dock metoder för att göra varje simulering noggrannare, till exempel genom att reducera det oundvikliga diskretiseringsfelet. I det här sammanhanget berör det diskretiseringen av de stokastiska processer som styr den underliggande aktien. Vi använder i synnerhet Hestons volatilitetsmodell för den underliggande. Genom att undersöka olika diskretiseringsmetoder strävar vi efter en effektiv implementering av Hestons modell i en generisk Monte Carlo-motor. Det visar sig svårt att överträffa den simpla Euler-diskretiseringen. Vi ser ingen anledning att gå ifrån (en något modifierad) Euler.
منابع مشابه
Option pricing under the double stochastic volatility with double jump model
In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...
متن کاملEfficient Simulation of the Heston Stochastic Volatility Model
Stochastic volatility models are increasingly important in practical derivatives pricing applications, yet relatively little work has been undertaken in the development of practical Monte Carlo simulation methods for this class of models. This paper considers several new algorithms for time-discretization and Monte Carlo simulation of Heston-type stochastic volatility models. The algorithms are...
متن کاملClassical and Bayesian Analysis of Univariate and Multivariate Stochastic Volatility Models
In this paper Efficient Importance Sampling (EIS) is used to perform a classical and Bayesian analysis of univariate and multivariate Stochastic Volatility (SV) models for financial return series. EIS provides a highly generic and very accurate procedure for the Monte Carlo (MC) evaluation of high-dimensional interdependent integrals. It can be used to carry out ML-estimation of SV models as we...
متن کاملA volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models
The aim of this work is to develop a simulation approach to the yield curve evolution in the Heath, Jarrow & Morton (1992) framework. The stochastic quantities considered as affecting the forward rate volatility function are the spot rate and the forward rate. A decomposition of the volatility function into a Hull & White (1990) volatility and a remainder allows us to develop an efficient Contr...
متن کاملVariance Reduction for Monte Carlo Methods to Evaluate Option Prices under Multi-factor Stochastic Volatility Models
We present variance reduction methods for Monte Carlo simulations to evaluate European and Asian options in the context of multiscale stochastic volatility models. European option price approximations, obtained from singular and regular perturbation analysis [J.P. Fouque, G. Papanicolaou, R. Sircar and K. Solna: Multiscale Stochastic Volatility Asymptotics, SIAM Journal on Multiscale Modeling a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009